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Abstract—The risk-aware path planning problem is consid-
ered, which aims to locate a target in a congested urban
environment and facilitate aid in the decision making on
target interdiction. The target is modeled as a ground vehicle
moving randomly within a road network and following traffic
rules. To locate the target, a heterogeneous sensor network
composed of passive sensors (e.g., static traffic cameras and
mobile human observers) and active sensors (e.g., a UAV) is
tasked to cooperatively search for the target. A sample-based
Bayesian filter is developed to fuse various sensor measurements
to estimate the target state. To facilitate the decision making
on target interdiction, a notion of risk is considered, which
evaluates the incurred loss of target interdiction at certain
locations based on incomplete information of target state and
urban factors (e.g., the proximity to critical areas such as
populated shopping malls, schools, military, or government
buildings). As opposed to the static traffic cameras and the
randomly walking human observers that passively provide
target measurements, the UAV actively plans its path, based on
mutual information, to maximize the informativeness of future
measurements. In contrast to classical target tracking that only
focuses on reducing the uncertainty of target state, the risk is
encoded in the particle weights to guide the motion of UAV
to improve target state estimation and, ultimately, reduce the
risk of decision on target interdiction. Simulation results are
provided to demonstrate the integrated sensing framework and
the risk-aware path planning algorithm.

I. INTRODUCTION

Networked agents that interact and cooperate as a team

have the potential to perform various tasks, such as tar-

get classification and tracking, surveillance, reconnaissance,

and scientific exploration [1]–[3]. Although homogeneous

agents (i.e., the same type of agents) are widely used in

such applications, system performance can be augmented

by considering agents with heterogeneous capabilities, since

certain type of agents may be better able to handle a set

of tasks than others. For instance, in target search and
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tracking by a team composed of autonomous robots and hu-

man observers, autonomous robots equipped with advanced

sensors (e.g., camera or Lidar) can provide more accurate

estimates of the target position and velocity, while human

observers generally do a better job in target classification

and description (e.g., target type, size, or shape). However,

ensuring proper coordination between heterogeneous agents

and integrating information from various sources to improve

system performance can be challenging.

In the context of estimation theory, target tracking can

be viewed as estimation of target state given noisy mea-

surements. One popular approach to nonlinear and non-

Gaussian estimation is the particle filter framework, which

represents the state uncertainty by a set of weighted samples

(i.e., particles) and the sample weights are updated when

new measurements are obtained [4]. The key advantage

of particle filtering is that nonlinear system dynamics and

nonlinear constraints can be accommodated in the particle

filter framework, and the Bayesian optimal estimate can be

approximated with sufficient number of particles [5]. Some

earlier results using the particle filter in urban target tracking

include Variable Structure Multiple Model Particle Filter

using information from road maps in [6], joint tracking

and identification of targets in [7], and discrete Gauss-

Markov target dynamics based approach in [8]. Recent results

reported in [9] and [10] develop particle filter based frame-

works that integrate soft information sensors (e.g., verbal

cues from human observers) with conventional information

sensors (e.g., cameras) to improve estimation efficiency.

Information theoretic approaches have been used recently

for active sensing in information gathering. Since mutual

information can predict how much new sensor measurements

will reduce the uncertainty of the target state, various mutual

information based results are developed for efficient informa-

tion seeking in target tracking. For instance, to minimize the

expected uncertainty of the target state, a greedy optimization

algorithm is developed in [11] that controls the mobile sen-

sors to maximize the mutual information of the future sensor

measurements and the target state. Entropy minimization

based active sensing is addressed in [12], where a receding

horizon control approach is used to minimize the posterior

entropy. In [13], robots are controlled to build maps of radi-

ation intensity based on mutual information methods. Sensor

placement and informative trajectory planning are developed

in [14]. In recent works of [15] and [16], information gradient

based controllers are developed for a sensor network to infer

the state of an environment such that the sensors move
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along the gradient of the mutual information to maximize

the informativeness of future observations. However, most

results developed in [11]–[16] are not immediately applicable

for complex urban environments where obstacles and road

maps impose constraints on the sensor motion.

In the present work, a heterogeneous sensor network

composed of passive sensors (e.g., static traffic camera and

mobile human observers) and a active sensor (e.g., a UAV)

is tasked to locate a target in a congested urban environment

and facilitate the decision making on target interdiction. The

target is modeled as a ground vehicle moving randomly

along the road network within an urban environment. It is

assumed that certain intersections are equipped with traffic

cameras that can detect the target from the traffic and provide

periodic measurements. Human observers walking randomly

along the road map can also report binary measurements on

detection or non-detection of the target. The UAV actively

plans its path based on where the next measurement should

be taken to improve the estimation of target state and,

ultimately, reduce the risk associated with target interdiction.

To facilitate aid in the decision making on target interdiction

in an urban environment, a notion of risk is considered, which

evaluates the incurred loss from target interdiction based on

incomplete information of target state and urban factors (e.g.,

the proximity to critical areas such as populated shopping

malls, schools, military, or government buildings). When

intercepting a target in an urban environment, the incurred

risk (e.g., collateral damage) is highly location dependent.

For instance, target interdiction near a populated shopping

mall or school zone would incur far more loss than in a less

populated zone. A hazard map associated with the urban

environment is assumed to be known which indicates the

potential risk of target interdiction at certain locations. A

novel particle filter based Bayesian framework is developed

to encode particle weights with the potential risk of decision

on target interdiction and the uncertain measurements from

traffic cameras, human observers, and UAV sensors, as well

as Type I (i.e., false positive) and Type II error (i.e., false

negative) associated with sensors. To facilitate active sensing,

the classical mutual information based approach is modified

to allow the UAV to plan its path to maximize the infor-

mativeness of future measurements, in terms of reducing the

risk of decision on target interdiction. In addition, the a priori

known urban attributes such as road speed limit, lanes, and

traffic rules are included in the present work to define a more

realistic path planning problem. Simulation results are then

provided to demonstrate the integrated sensing framework

and the risk-aware path planning algorithm.

II. PROBLEM FORMULATION

A. Urban Environment and Target Model

Consider an urban environment Eu ⊂ R
2 that consists

of obstacles Eo ⊂ R
2 (e.g., buildings) and the free space

Ef ⊂ R
2 (e.g., roads and intersections) with Eo∪Ef = Eu .

As shown in Fig. 1, the solid rectangular objects indicate the

obstacles and the remaining area indicates the free space.

Figure 1. The urban target tracking scenario. The solid rectangles indicate
obstacles (e.g., buildings) and the white space between obstacles indicate
roads and intersections. The green rectangle indicates the field of view of the
traffic camera at the selected intersection. The mobile target is represented
by a red dot. The observation areas of two human observers are represented
by a blue and a magenta disks, respectively. The sensing footprint of the
UAV is represented by a red disk area.

It is assumed that full knowledge of the urban environment

Eu (i.e., roads, buildings, intersections, and speed limits) is

available. The target is modeled as a ground mobile vehicle

with nonholonomic kinematic constraints as

pxk = pxk−1 +Δtvk cos θk
pyk = pyk−1 +Δtvk sin θk,

(1)

where Δt ∈ R
+ is the discrete time step size, xT (k) �

[pxk, p
y
k] ∈ R

2, θk ∈ R, and vk ∈ R
+ denote the target

position, the target heading, and the target forward speed at

time k, respectively. The target is assumed to move within

the free space Ef (i.e., the target is not allowed to enter

the obstacle space Eo or leave the map), traveling straight

along the road and making turns randomly at intersections.

The target is further restricted to remain on the right side of

the road by following traffic flow and maintains a reasonable

speed according to the associated road speed limit. To model

the uncertainty in the target motion, its speed vk is defined as

vk � Vr+
uk−0.5

5 Vr, where Vr ∈ R
+ denotes the associated

road speed limit and uk ∈ [0, 1] is a random number drawn

from the uniform distribution U (0, 1). The target position

at time k is denoted by a random variable xT (k) ∈ R
2

and X ⊂ Ef represent the state space of xT . The particle

filter is used in the present work to represent the probability

distribution of the target position. The key idea of the particle

filter is to use a set of independent random samples, also

called particles, to represent the posterior distribution of a

system state (cf. [17] and [4]). As a new sequence of sensor

measurements arrives, the particles are re-weighted to update

the state estimate.
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B. Sensors

A heterogeneous sensor network that consists of passive

sensors and active sensors provides measurements of the

moving target in an obstacle-rich urban environment. As

shown in Fig. 1, the field-of-view (FOV) of the traffic camera

covers the entire intersection. The disks in Fig. 1 represent

the observation areas of two human observers and the sensing

footprint of the UAV.

Consider nc ∈ Z
+ cameras located at road intersections

and let ψi
c ∈ R

2, i ∈ {1, . . . , nc} , be the FOV of the ith
traffic camera. The traffic cameras are assumed to provide

measurements to report detection or non-detection of the

target. Particularly, if xT (k) ∈ ψi
c, the measurement mi

c,k

received from the camera i at time k is modeled as a

Bernoulli random variable

mi
c,k =

{
1 with probability pic
0 with probability 1− pic,

(2)

where mi
c,k = 1 and mi

c,k = 0 indicates a detection and

non-detection reported by camera i, respectively. The pic ∈
(0, 1) in (2) indicates the probability of reporting detection

if the target is within the FOV of camera i . Similarly, if

xT (k) /∈ ψi
c,

mi
c,k =

{
1 with probability 1− qic
0 with probability qic,

(3)

where qic ∈ (0, 1) in (3) indicates the probability of reporting

non-detection if the target is not within the FOV of camera

i . The probability 1− pic in (2) and the probability 1− qic in

(3) are also known as Type II error (i.e., false negative) and

Type I error (i.e., false positive), respectively.

Human observers are involved by acting as mobile sensors

walking randomly along the road map. Consider nh ∈ Z
+

human observers and assume the observation area of each

human i ∈ {1, . . . , nk} is a disk area ψi
h ∈ R

2 with radius

rih ∈ R
+, as shown in Fig. 1. Although humans can provide

rich description of the target by naturally encoding their

observations (e.g., target size, color, type, etc.) as in our

earlier work of [10], a simplified sensing model for humans

is applied in the current work, where humans only report

detection or non-detection of the target as they randomly

walk in the the urban environment Eu. Ongoing work is

to fuse human sensing information via touch interface to

improve the target estimate. Similar to traffic cameras, a

target classification error is also associated with the human

observers, due to imperfect visual and cognitive abilities. The

measurement mi
h,k from human i at time k, similar to (2)

and (3), is modeled as a Bernoulli random variable, where

mi
h,k = 1 with probability pih ∈ (0, 1) and mi

h,k = 0 with

probability 1 − pih given that xT (k) ∈ ψi
h. If xT (k) /∈ ψi

h,

mi
h,k = 0 with probability qih ∈ (0, 1) and mi

h,k = 1 with

probability 1− qih.

A fixed wing UAV with constant velocity and altitude

is utilized throughout the work. Similar to traffic cameras

and human observers, the UAV sensor (e.g., a down-looking

monocular camera) also reports detection or non-detection of

the target, with a sensor footprint projected on Eu modeled

as a disk area ψUAV ∈ R
2 with radius rUAV ∈ R

+. The

measurements from the UAV sensor mUAV,k at time k follow

a similar distribution as in (2) and (3), where mUAV,k = 1
with probability pUAV ∈ (0, 1) and mUAV,k = 0 with

probability 1−pUAV given that xT (k) ∈ ψUAV . If xT (k) /∈
ψUAV , mUAV,k = 0 with probability qUAV ∈ (0, 1) and

mUAV,k = 1 with probability 1− qUAV . While static traffic

cameras and randomly walking human observers passively

receive target measurements, the UAV actively plans its path

on where the next measurement should be taken such that

the target estimate can be improved, using the particle filter

based target probability distribution.

C. Target Interdiction Risk

Let L (l, xT (k)) : Eu×X → R denote a known measure

of loss at time k when intercepting the target at a certain

location l ∈ Ef given a certain target position xT (k) ∈
X . It is assumed that environment factors such as critical

buildings or populated areas are encoded in the function

L (l, xT (k)). For instance, larger loss will be incurred if

the target is intercepted near populated areas (e.g., shopping

mall or school zone) or close to critical buildings (e.g.,

hospitals, military, or government buildings). Given the belief

of target position probability distribution Pr (xk) at time

k, the expected loss of target interdiction at location l is

defined as Rk (l) =
´
xk∈X L (l, xk) Pr (xk) dxk, which can

be approximated as

Rk (l) =
N∑
i=1

L
(
l, x

(i)
k

)
Pr

(
x
(i)
k

)
, (4)

since the target state is estimated by weighted particles.

In (4), the expected loss will be referred as risk, since

it indicates how much loss we will experience with the

expectation of target interdiction at location l given the belief

of target states at time k. In contrast to most existing works

that only focus on moving sensors to reduce uncertainty

of the target estimation, the main objective in this work

is to develop a path planning rule that actively guides the

motion of the UAV to reduce the risk of decision on target

interdiction.

III. SAMPLE-BASED BAYESIAN FILTER

Urban path planning relies on the information collected by

traffic cameras, human observers, and UAV sensors, which

necessitates the use of a sample-based Bayesian filter to fuse

measurements from various sources. In the present work,

a set of N particles are updated according to the target

dynamics in (1) and the particle weights
{
w

(i)
k

}
are updated

according to the sensor measurements. Since the sensors are

modeled in Section II, for simplicity in presentation, a com-

mon notation zk will be used in the subsequent development

to indicate the measurements from corresponding sensors.

In particular, given the measurement zk = 1 at time k,
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which indicates a detection of the target from either the traffic

camera, UAV sensor, or human observer, the probability that

the target exists in the corresponding sensor footprint (i.e.,

xT (k) ∈ ψ ) is

Pr (xT (k) ∈ ψ| zk = 1) = ξ
Pr (xT (k) /∈ ψ| zk = 1) = 1− ξ,

(5)

where ψ ∈ {ψc, ψh, ψUAV } is a generalized sensor footprint

and ξ ∈ (0, 1) is the probability that the target is present in

the corresponding sensor footprint given the measurement

of detection. Since the measurement of detection does not

ensure the target presence in ψ from (5), it is desirable to

maintain non-zero mass of particles outside ψ to account for

Type I error. Using the error probabilities, the particle weight

can be updated using Bayes rule as

w
(i)
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
(i)
k−1 Pr

(
zk=1|x(i)

k

)

N1∑
j=1

w
(j)
k−1 Pr

(
zk=1|x(j)

k

)
+

N∑
N1+1

w
(j)
k−1(1−ξ)

, x
(i)
k ∈ ψ

w
(i)
k−1(1−ξ)

N1∑
j=1

w
(j)
k−1 Pr

(
zk=1|x(j)

k

)
+

N∑
N1+1

w
(j)
k−1(1−ξ)

, x
(i)
k /∈ ψ

(6)

where N1 is the number of particles such that x
(i)
k ∈ ψ,

∀i ∈ {1, . . . , N1} , and Pr
(
zk = 1|x(i)

k

)
is the likelihood

of reporting detection when x
(i)
k ∈ ψ. The update law in (6)

indicates that the weights of particles outside ψ will decrease

with successive positive sensor measurements resulting in

improved confidence of sensors against Type I error.

Analogously, due to Type II error, the probability that

the target exists in the corresponding sensor footprint (i.e.,

xT (k) ∈ ψ ) given the measurement of non-detection of

target (i.e., zk = 0) at time k is

Pr (xk ∈ ψ| zk = 0) = μ
Pr (xk /∈ ψ| zk = 0) = 1− μ,

(7)

where μ ∈ (0, 1) is the probability that the target is present

given the measurement of non-detection. Since the measure-

ment of non-detection does not guarantee the absence of

the target in the sensor footprint, the particle update law is

developed for the case of missed detection as

w
(i)
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μw
(i)
k−1

N2∑
j=1

μw
(j)
k−1+

N∑
N2+1

w
(j)
k−1

, x
(i)
k ∈ ψ

w
(i)
k−1

N2∑
j=1

μw
(j)
k−1+

N∑
N2+1

w
(j)
k−1

, x
(i)
k /∈ ψ

(8)

where N2 is the number of particles within ψ. The update

law in (8) indicates that the weights of particles inside ψ will

decrease with successive sensor measurements to safeguard

against Type II error.

Note that the update laws in (6) and (8) aim to reduce

the uncertainty of the target state estimate using sensor mea-

surements, without considering the risk associated with target

interdiction. Based on (6) and (8), the particle weights need

to be further updated to encode the risk of target interdiction

from (4). In particular, the urban environment Eu is divided

into cm × cn block of cells in the present work, where each

cell is denoted by Cij ∈ Eu with i ∈ {1, . . . , cm} and

j ∈ {1, . . . , cn}. It is assumed that the urban environment is

associated with a hazard map H ∈ R
cm×cn , where each

entry Hij ∈ R indicates a potential loss associated with

target interdiction at Cij . For instance, higher loss value

Hij is assigned to the cell Cij that contains critical areas

such as schools, military or government buildings. Given the

estimated target distribution at time k, the risk value Rk (Cij)
in (4) indicates the incurred loss if the decision is made to

intercept the target at cell Cij . An example Rk (Cij) used in

the current work is in the form of

Rk (Cij) � α
∑

m/∈Iij
k

w
(m)
k + βHij , (9)

where Iijk denotes the set of particle indices such that

x
(m)
k ∈ Cij for ∀m ∈ Iijk and α, β ∈ R

+ are weighting

factors to adjust the relative importance of target uncertainty

represented by particles and the potential loss represented

by the hazard map. Based on (9), new particle weights{
x
(i)
k , ζ

(i)
k

}
are created with

ζ
(i)
k =

w
(i)
k

Rk (Cij) , ∀i ∈ Iijk , (10)

where the particles weights are rescaled based on the risk

values computed from (9). The update law in (9) indicates

that the particles within high-risk areas will decrease their

weights, since there is less reward for target interdiction

in high-risk areas. After performing (10), all weights of

particles are then normalized to satisfy
∑N

i=1 ζ
(i)
k = 1.

Resampling of particle weights is applied when necessary

to avoid the degeneracy phenomenon [4].

IV. RISK-AWARE PATH PLANNING

In Information Theory [18], the entropy of a probability

distribution Pr (xk) is a measure of its uncertainty, which

is defined as H (xk) � − ´
xk∈X Pr (xk) log Pr (xk) dxk,

where X is the state space of xk. The mutual information

between the state xk and the measurement zk is then defined

as

Ik �
ˆ
zk∈Z

ˆ
xk∈X

Pr (xk, zk) log
Pr (xk, zk)

Pr (xk) Pr (zk)
dxkdzk

(11)

where Z is the state space of zk. In (11), the mutual

information is a metric of the expected divergence (Kullback-

Liebler) between xk and zk, which indicates how much

information one random variable can provide on the other.

Since the state xk in the current work is represented by

a set of particles that encodes target state uncertainty and

the risk associated with target interdiction, inspired by the

mutual information, it is desirable to move the UAV in a

way to maximize the mutual information such that its future
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measurements can provide as much information on xk as

possible.

In particular, the UAV plans its path by selecting a specific

road to proceed from a set of permissible roads when reach-

ing an intersection. Since the UAV is constrained to move

forward within the road network and is not allowed to stay

on the map or fly backward, the permissible roads at each

intersection contains up to three candidates, which restricts

the UAV to either go straight, turn left, or turn right, depend-

ing on the road network. Based on the mutual information

in (11), the path is determined by selecting a specific road

that can maximize the predicted mutual information. The

predicted mutual information is calculated for each candidate

permissible road by propagating the particles forward in time

under the assumption that no new measurements are available

from all sensors. The path planning decision is then made

based on a greedy approach by selecting a candidate road

that provides the most predicted mutual information.

It is assumed that the UAV has complete knowledge of the

urban environment such as all obstacles, roads, and intersec-

tions, which enables the UAV to know immediately the set of

permissible roads and the distance to the permissible roads

when reaching an intersection. Consider that all intersections

are labeled and let the ith permissible road be ri, i ∈ IRj ,

where IRj represents the set of indices of permissible roads

at the jth intersection. Since the UAV moves with constant

velocity, the travel time ti from its current position to

the road ri is available. The predicted mutual information

obtained by assuming the UAV at the road ri is calculated

by propagating the particles for a amount of time ti from the

current time k to k′ = k + ti. Using the predicted particles{
x
(i)
k′ , ζ

(i)
k′

}
, the predicted mutual information for road ri

can be approximated from (11) as

Ik′ (ri) =
∑
zk∈Z

N∑
i=1

Pr
(
zk′ = zk′ |xk′ = x

(i)
k′

)
ζ
(j)
k′

× log

⎛
⎝ Pr

(
zk′ = zk′ |xk′ = x

(i)
k′

)
∑N

j=1 ζ
(j)
k′ Pr

(
zk′ = zk′ |xk′ = x

(j)
k′

)
⎞
⎠ ,

(12)

where the likelihood Pr
(
zk′ = zk′ |xk′ = x

(i)
k′

)
is assumed

known for calibrated UAV sensors. Based on (12), the subse-

quent road for the UAV at the jth intersection is determined

by

r = argmax
ri

Ik′ (ri) , ∀i ∈ IRj , (13)

which indicates that the UAV selects a path with maxi-

mum predicted mutual information. Since Ik (ri) in (12) is

computed based on an assessment of the predicted mutual

information on immediately subsequent roads, the decision

policy (i.e., one-step decision) in (13) may suffer from

its myopic construction. Ongoing work considers a better

decision making policy using Partially Observed Markov

Decision Process (POMDP) based approaches for multi-step

decision in the UAV path planning (cf. [19]).

V. SIMULATION RESULTS

Simulation results are provided to demonstrate the per-

formance of the developed path planning framework. Based

on the urban environment described in Section II, the initial

positions of the target, human observers, and the UAV

are randomly selected from the free space Ef , and their

initial headings are determined based on the traffic flow

of the selected initial positions. The sensing radius of the

human observers and the UAV are set as 45 m and 100 m,

respectively. To represent Type I and Type II error associated

with the sensors, the probability of false positive and false

negative are set as 0.05 and 0.2. The road speed limit is

set as 30 miles/hour and the target moves according to (1)

within the road map following traffic rules. Human observers

and the UAV move with a fixed speed of 5 miles/hour and

40 miles/hour, respectively. The environment is divided into

11 × 9 grid of square cells, where each cell has a size of

100 m × 100 m.
To represent the initial estimate of the target position,

a set of 1000 particles with equal weights are uniformly

and randomly deployed on the roads in Eu. The critical

area is indicated in Fig. 2, where the associated hazard

map is represented by the colored area around the critical

area. The hazard level is encoded according to the color

bar, where red indicates a potential high loss associated

with target interdiction. Based on the hazard map and the

initially deployed particles, the risk based initial belief of

the target distribution computed from (9) is represented in

Fig. 3, where the value indicates the accumulated particle

weights that encode the target uncertainty and the risk of

target interdiction at corresponding locations. As shown in

Fig. 3, the area around the critical area is associated with low

values, which indicates visiting that area may not provide

much information to reduce the risk associated with the

decision on target interdiction. Based on the developed path

planning algorithm, the UAV plans its path to reduce the risk

of target interdiction, where Fig. 4 indicates an example trial

where the estimated entropy and the minimal risk decrease on

average during the simulation. To show the average perfor-

mance, 50 Monte Carlo trials were conducted with the same

initial positions and headings for the target, human observers,

and the UAV. For each trial, the particles are randomly

deployed initially and the target moves along a random and

unknown trajectory. Each trial duration is restricted to 100

seconds. Simulation results show that the average reduction

of estimate entropy is 54%. To show that the performance

of the developed path planning algorithm, the minimal risk

value for each trial is recorded and the average reduction of

minimal risk value is 43%, which indicates that the UAV

moves in a way to improve the performance of urban target

estimate and interdiction.

VI. CONCLUSION

This paper examines the urban path planning problem

that consists of passive sensors (e.g., static traffic camera

and mobile human observers) and active sensors (e.g., a
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Figure 2. The plot of hazard map around the critical area.

Figure 3. The plot of the risk based belief on the target distribution.
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Figure 4. The left plot shows the decrease of estimate entropy and the
right plot shows the decrease of the minimal risk value during evolution.

UAV). A sample-based Bayesian filter is developed to fuse

various sensor measurements to improve the target estimate.

A simplified human model that only reports detection or

non-detection of the target is used in the present work.

Future work will consider an advanced human model that

can provide rich information about the target by voice, text,

or user-interface to improve target classification and tracking.

Future work will also consider multi-step decision policies

for the UAV path planning using Partially Observed Markov

Decision Process (POMDP) based approaches.
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